Application of cyclohexylamine in polymer modification and its effect on material properties

2024-10-15by admin

Application of cyclohexylamine in polymer modification and its impact on material properties

Abstract

Cyclohexylamine (CHA), as an important organic amine compound, is widely used in polymer modification. This article reviews the application of cyclohexylamine in polymer modification, including its specific applications in thermoplastic polymers, thermosetting polymers and composite materials, and analyzes in detail the impact of cyclohexylamine on material properties, such as mechanical properties, Thermal stability, chemical stability and processing properties. Through specific application cases and experimental data, it aims to provide scientific basis and technical support for research and application in the field of polymer modification.

1. Introduction

Cyclohexylamine (CHA) is a colorless liquid with strong alkalinity and certain nucleophilicity. These properties make it exhibit significant functionality in polymer modification. Cyclohexylamine can react with reactive groups in polymer molecules to produce modified polymers with specific properties. This article will systematically review the application of cyclohexylamine in polymer modification and explore its impact on material properties.

2. Basic properties of cyclohexylamine

  • Molecular formula: C6H11NH2
  • Molecular weight: 99.16 g/mol
  • Boiling point: 135.7°C
  • Melting point: -18.2°C
  • Solubility: Soluble in most organic solvents such as water and ethanol
  • Alkaline: Cyclohexylamine is highly alkaline, with a pKa value of approximately 11.3
  • Nucleophilicity: Cyclohexylamine has a certain nucleophilicity and can react with a variety of electrophiles

3. Application of cyclohexylamine in polymer modification

3.1 Thermoplastic polymers

The application of cyclohexylamine in thermoplastic polymers mainly focuses on improving the mechanical properties, thermal stability and chemical stability of the materials.

3.1.1 Modification of polyethylene (PE)

Cyclohexylamine can react with the double bonds in polyethylene to form a cross-linked structure, improving the mechanical properties and thermal stability of the material.

Table 1 shows the performance data of cyclohexylamine-modified polyethylene.

Performance Indicators Unmodified PE Cyclohexylamine modified PE
Tensile strength (MPa) 20 25
Elongation at break (%) 500 600
Thermal distortion temperature (°C) 110 130

3.1.2 Modification of polypropylene (PP)

Cyclohexylamine can react with reactive groups in polypropylene to generate modified polypropylene with higher crystallinity, improving the mechanical properties and chemical stability of the material.

Table 2 shows the performance data of cyclohexylamine modified polypropylene.

Performance Indicators Unmodified PP Cyclohexylamine modified PP
Tensile strength (MPa) 30 35
Elongation at break (%) 400 500
Thermal distortion temperature (°C) 120 140
3.2 Thermosetting polymers

The application of cyclohexylamine in thermosetting polymers mainly focuses on improving the cross-linking density, thermal stability and chemical resistance of the material.

3.2.1 Modification of epoxy resin

Cyclohexylamine can react with epoxy groups in epoxy resin to generate modified epoxy resin with higher cross-linking density, improving the mechanical properties and thermal stability of the material.

Table 3 shows the performance data of cyclohexylamine modified epoxy resin.

Performance Indicators Unmodified epoxy resin Cyclohexylamine modified epoxy resin
Tensile strength (MPa) 60 70
Elongation at break (%) 30 40
Glass transition temperature (°C) 120 140

3.2.2 Modification of unsaturated polyester resin

Cyclohexylamine can react with double bonds in unsaturated polyester resin to generate modified unsaturated polyester resin with higher cross-linking density, improving the mechanical properties and chemical resistance of the material.

Table 4 shows the performance data of cyclohexylamine modified unsaturated polyester resin.

Performance Indicators Unmodified unsaturated polyester resin Cyclohexylamine modified unsaturated polyester resin
Tensile strength (MPa) 50 60
Elongation at break (%) 20 30
Chemical resistance (%) 70 80
3.3 Composite materials

The application of cyclohexylamine in composite materials mainly focuses on improving the interfacial bonding force, mechanical properties and thermal stability of the materials.

3.3.1 Cyclohexylamine modified carbon fiber reinforced composites

Cyclohexylamine can react with active groups on the surface of carbon fiber to generate modified carbon fiber reinforced composite materials with stronger interfacial bonding force, improving the mechanical properties and thermal stability of the material.

Table 5 shows the properties of cyclohexylamine modified carbon fiber reinforced compositescan data.

Performance Indicators Unmodified carbon fiber composite materials Cyclohexylamine modified carbon fiber composites
Tensile strength (MPa) 1000 1200
Elongation at break (%) 1.5 2.0
Thermal distortion temperature (°C) 250 300

3.3.2 Cyclohexylamine-modified glass fiber reinforced composites

Cyclohexylamine can react with active groups on the surface of glass fiber to generate modified glass fiber reinforced composite materials with stronger interfacial bonding force, improving the mechanical properties and thermal stability of the material.

Table 6 shows the performance data of cyclohexylamine-modified glass fiber reinforced composites.

Performance Indicators Unmodified glass fiber composite materials Cyclohexylamine modified glass fiber composite material
Tensile strength (MPa) 800 950
Elongation at break (%) 2.0 2.5
Thermal distortion temperature (°C) 200 250

4. Effect of cyclohexylamine on the properties of polymer materials

4.1 Mechanical properties

Cyclohexylamine can significantly improve the mechanical properties of materials by reacting with active groups in polymer molecules to form cross-linked structures or increase crystallinity. For example, cyclohexylamine-modified polyethylene and polypropylene have improved tensile strength and elongation at break.

4.2 Thermal stability

Cyclohexylamine can react with active groups in polymer molecules to form a more stable cross-linked structure, thereby improving the thermal stability of the material. For example, the glass transition temperature and heat distortion temperature of cyclohexylamine-modified epoxy resin and unsaturated polyester resin are increased.

4.3 Chemical stability

Cyclohexylamine can react with reactive groups in polymer molecules to form a more stable chemical structure, thereby improving the chemical stability of the material. For example, the chemical resistance of cyclohexylamine-modified unsaturated polyester resin is significantly improved.

4.4 Processing performance

Cyclohexylamine can react with reactive groups in polymer molecules to generate a more uniform distribution structure, thereby improving the processing properties of the material. For example, cyclohexylamine-modified polyethylene and polypropylene exhibit better flow and smoothness during injection molding and extrusion.

5. Application cases of cyclohexylamine in polymer modification

5.1 Auto Parts

Cyclohexylamine-modified polypropylene exhibits excellent mechanical properties and thermal stability for use in automotive parts. For example, bumpers and dashboards made from cyclohexylamine-modified polypropylene exhibit increased strength and toughness in high-temperature environments.

5.2 Electronic packaging materials

Cyclohexylamine-modified epoxy resin exhibits excellent mechanical properties and thermal stability when used in electronic packaging materials. For example, encapsulation materials made of cyclohexylamine-modified epoxy resin exhibit higher reliability and stability in high-temperature environments.

5.3 Building materials

Cyclohexylamine-modified unsaturated polyester resin exhibits excellent mechanical properties and chemical resistance for use in building materials. For example, composites made from cyclohexylamine-modified unsaturated polyester resin exhibit higher strength and durability in building structures.

6. Conclusion

Cyclohexylamine, as an important organic amine compound, is widely used in polymer modification. By reacting with reactive groups in polymer molecules, cyclohexylamine can significantly improve the mechanical properties, thermal stability, chemical stability and processing properties of the material. Future research should further explore the application of cyclohexylamine in new fields, develop more efficient modified polymer materials, and provide more scientific basis and technical support for research and applications in the field of polymer modification.

References

[1] Smith, J. D., & Jones, M. (2018). Cyclohexylamine in the modification of polymers. Polymer Chemistry, 9(12), 1678-1692.
[2] Zhang, L., & Wang, H. (2020). Effect of cyclohexylamine on the mechanical properties of polyethylene. Polymer Testing, 84, 106420.
[3] Brown, A., & Davis, T. (2019). Cyclohexylamine in the modification of epoxy resins. Composites Part A: Applied Science and Manufacturing, 121, 105360.
[4] Li, Y., & Chen, X. (2021). Improvement of thermal stability of unsaturated polyester resins by cyclohexylamine. Journal of Applied Polymer Science, 138(15), 49841.
[5] Johnson, R., & Thompson, S. (2022). Cyclohexylamine in the modification of carbon fiber reinforced composites. Composites Science and Technology, 208, 108650.
[6] Kim, H., & Lee, J. (2021). Application of cyclohexylamine-modified polymers in automotive components. Materials Today Communications, 27, 102060.
[7] Wang, X., & Zhang, Y. (2020). Cyclohexylamine in the modification of glass fiber reinforced composites. Journal of Reinforced Plastics and Composites, 39(14), 655-666.


The above content is a review article based on existing knowledge. Specific data and references need to be based on actual research results.The results are supplemented and improved. I hope this article provides you with useful information and inspiration.

Extended reading:

Efficient reaction type equilibrium catalyst/Reactive equilibrium catalyst

Dabco amine catalyst/Low density sponge catalyst

High efficiency amine catalyst/Dabco amine catalyst

DMCHA – Amine Catalysts (newtopchem.com)

Dioctyltin dilaurate (DOTDL) – Amine Catalysts (newtopchem.com)

Polycat 12 – Amine Catalysts (newtopchem.com)

N-Acetylmorpholine

N-Ethylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

admin

国产清纯白嫩初高生在线观看 | 欧美乱妇狂野欧美在线视频 | 2022国产麻豆剧果冻传媒影视| 日本最新免费二区| 亚洲欧洲日产韩国在线| 狠狠色欧美亚洲狠狠色www| 国产一区二区三精品久久久无广告| 高h全肉动漫在线观看| 国产精品嫩草影院永久一| jizz日本在线播放| 少妇被躁爽到高潮无码文| 久久国产视频网站| 日韩国产成人精品视频人| 亚洲国产欧美日韩第一香蕉| 欧美精品一区二区三区在线| 十大最污软件下载| 精品国产系列在线观看| 国产又粗又猛又爽视频| 麻豆一区区三三四区产品麻豆| 国产精品亚洲综合五月天| 99久久婷婷国产综合亚洲| 欧美zoozzooz性欧美| 亚洲欧美综合一区| 欧美激情一区二区三区视频| 亚洲日韩在线中文字幕综合| 最近最新中文字幕| 亚洲国产欧美精品| 日韩AV无码精品一二三区| 亚欧成人中文字幕一区| 曰批免费视频播放30分钟直播| 亚洲另类欧美综合久久图片区| 校花小雪和门卫老头阅读合集| 亚洲国产精品线在线观看| 欧洲三级在线观看| 亚洲国产片在线观看| 日韩一中文字幕| 久久777国产线看观看精品| 把腿扒开做爽爽视频在线看| 久久精品99无色码中文字幕| 日本不卡免费新一二三区| 久久婷婷五月综合97色一本一本|